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We show that techniques of spatial adiabatic passage can be used to realize an electron interferometer in a
geometry analogous to a conventional Aharonov-Bohm ring, with transport of the particle through the device
modulated using coherent transport adiabatic passage. This device shows an interesting interplay between the
adiabatic and nonadiabatic behavior of the system. The transition between nonadiabatic and adiabatic behavior
may be tuned via system parameters and the total time over which the protocol is enacted. Interference effects
in the final state populations analogous to the electrostatic Aharonov-Bohm effect are observed.
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I. INTRODUCTION

Quantum information science offers a wealth of new and
potentially important phenomena to explore. One hope is that
these possibilities will translate into practical and unique de-
vices, with functionalities unmatched by classical devices.
One field that has explored quantum mechanical effects and
quantum coherence in particular is the field of light-matter
interactions and especially the couplings and effects investi-
gated in the physics of optically driven multilevel atoms.1

Moving from atomic systems, with particular level struc-
tures, to spatial systems, perhaps defined lithographically,
provides dramatic opportunities to tailor the Hilbert space
and connectivity of the resultant quantum system. This al-
lows natural translations of known effects from the atomic
realm, to the electronic realm. Examples include charge
qubits2 and qudits,3 adiabatic passage,4 and electromagneti-
cally induced transparency.5 A review of some of the
progress in mesoscopic electronic systems, focusing on the
quantum electronics/quantum optics/quantum information
interface can be found in Ref. 6.

The solid-state provides exceptional possibilities for real-
izing spatially defined Hilbert spaces, especially in the con-
text of superconductors, donors in silicon,7 and quantum
dots. Here we focus on the latter for conceptual simplicity,
but our ideas are equally relevant to all these implementa-
tions. Quantum dots provide a rich platform for exploring
novel experiments in quantum mechanics and often allow for
fine control over many system parameters. Chains of con-
nected dots are of particular interest, with recent studies in-
cluding examinations of triple quantum dots in GaAs 2DEG
structures,8–12 carbon nanotubes,13 and double quantum dots
in silicon,14 which extend the accessible spatial Hilbert space
to allow clear connections with the quantum optical case.

Coherent tunneling adiabatic passage �CTAP� �Ref. 4� has
been proposed for transporting quantum information and is a
spatial analog of the well-known STIRAP protocol from
quantum optics.1 It transports a particle coherently using a
counterintuitive coupling sequence of tunneling matrix ele-
ments. CTAP has been recently demonstrated by Longhi et
al. using photons in three and multiwaveguides structure15–17

but it has also been proposed for observation in quantum

dots.18–20 Other platforms for which demonstrations of CTAP
have been proposed include phosphorus donors in
silicon,21–23 where CTAP can be used as the transport mecha-
nism in a quantum computer architecture, and also in
superconductors,24 single atoms in optical potentials,25,26 and
Bose-Einstein condensates.27,28 STIRAP has also been dis-
cussed for spatial particle motion in quantum dots, see for
example Refs. 29 and 30.

The extensible nature of controlling the spatial location of
states and their connectivity has led to CTAP being extended
to multiple recipients: multiple receiver adiabatic passage
�MRAP� �Refs. 31 and 32� as a means of implementing a
form of fanout for a quantum computer. This branching abil-
ity and the fact that CTAP is a coherent process, lends itself
to investigating interferometry with devices using the CTAP
as the transport mechanism.

Interferometry is a well-known means of probing the
wavelike properties of particles, and nontrivial quantum
phases. There have also been solid-state experiments that
utilize interferometry to observe the wave-like nature of elec-
trons in Aharonov-Bohm �AB� and related interferometers
for “which-path” measurements.33–35 The AB effect is a to-
pological effect where a charged particle �for example an
electron� traverses a loop. If the loop encloses a magnetic
flux, this will break the symmetry of the paths and introduce
a nontrivial phase. Interferometry then allows this phase to
be revealed in oscillations in the final state population, as a
function of the enclosed flux.

Here we are considering an adiabatic realization of the
electrostatic Aharonov-Bohm �EAB� effect.36,37 This effect is
named by analogy with the AB effect, but is not a topological
effect. Instead, an external electrostatic field is used to break
the symmetry of the two paths, which again gives rise to
nontrivial phases and population oscillations as a function of
the field. The EAB effect has been investigated in the context
of one-dimensional mesoscopic rings in metallic38 and semi-
conductor structures39,40 and generalized for the case where
both electrostatic and magnetostatic potentials exist.41

We show that CTAP can be used to explore physics simi-
lar to those seen in the EAB effect. Our suggested geometry,
highly reminiscent of traditional AB rings, is shown in Fig.
1. It consists of six sites with the tunneling between sites
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controlled via surface control gates. The energies of the two
middle sites in each branch may also be controlled by a gate
and it is assumed that the energy of an electron at each other
site is also controlled, static, and equal. A square quantum
dot such as that examined in Refs. 42 and 43 with added
coupling to a source and drain is one possible implementa-
tion of this structure. Aharonov-Bohm-like oscillations in an
adiabatic passage four dot ring in the presence of a magnetic
field has also been considered.44

The device shown in Fig. 1 is analogous to a Mach-
Zehnder interferometer where the final state population ob-
served is dependent on the interference condition created by
the gate-controlled energy shifts on either arm. Because of
the deep analogy between this structure and that of quantum
optical systems, we shall refer to the energy shifts of these
donors as detunings. The detuning on the middle sites is
controlled individually by gates and plays a similar role to
the phase difference between the two arms of the Mach-
Zehnder interferometer. Here we are investigating the pas-
sage of a single electron traveling through the device in some
superposition of the two pathways. Where the detuning is
different in the two paths there will be different phase accu-
mulated by the electron, which is exhibited in the interfer-
ence pattern in the final state population of the end-of-chain
site. The device we consider uses adiabatic passage as the
means of transport. This provides interesting flexibility and a
rich phase space to explore. In particular this six-dot geom-
etry is the simplest topology that permits both adiabatic pas-
sage and a nontrivial loop. Furthermore, our model shows an
interesting interplay between adiabatic and nonadiabatic fea-
tures, as is discussed below.

In our proposed quantum dot geometry, the tunneling ma-
trix elements �TMEs� are controlled via surface gates using
the alternating coupling scheme with counterintuitive pulse
ordering �described below�, a variation in the CTAP protocol
called alternating CTAP �ACTAP�. This geometry has been
investigated in linear chains for quantum dots18 and in the
context of a five donor Si:P device.45 Again, we do not wish
to explore the microscopic details of particular implementa-
tions too strongly, instead focusing on the physics that can be

demonstrated in all potential platforms. Because of the wide
range of possible implementations, we do not treat decoher-
ence here, although its effect will be to wash out the inter-
ference patterns.

II. ANALYTICS AND MODELING

To explore the dynamics of the ACTAP interferometer, we
write the Hamiltonian for this system as:

H = �1��1��2� + �3u��4� + �3d��4�� + �2��2��3u� + �2��3d�

+ �4��5�� + H.c. + �u�3u��3u� + �d�3d��3d� , �1�

where �1 and �2 are the gate-controlled TMEs and �u, �d
the energy detunings of sites �3u� and �3d�, respectively, and
� has been set to 1. In general the TMEs between nearest
neighbors will be independent, however by construction; we
have chosen gate values that ensure the form of the Hamil-
tonian shown in Eq. �1�. This form is necessary to enforce
the ideal ACTAP coupling scheme. It should be realized,
however, that complete symmetry is not required. The AC-
TAP scheme has some robustness to variations from the ideal
case, and this was explored for the linear ACTAP chain in
Ref. 45. The choice of equality greatly simplifies the analysis
and encapsulates all of the physics of CTAP. Indeed this is
the simplest coupling scheme that provides interferometry
with a nontrivial loop and CTAP coupling. For simplicity, we
choose squared sinusoid functions for the form of the TMEs:

�1 = �1 max sin2� �t

2tmax
� ,

�2 = �2 max cos2� �t

2tmax
� , �2�

where �1 max=�2 max=�max is depicted in Fig. 2�a�.
In the case �u=�d=0 the time dependent eigenvalues of

the Hamiltonian are

E0 = 0,

E� = �
�3�1

2 + 3�2
2 − ��1

4 + 14�1
2�2

2 + �2
4

�2
,

E2 � = �
�3�1

2 + 3�2
2 + ��1

4 + 14�1
2�2

2 + �2
4

�2
, �3�

where E0 is doubly degenerate. These eigenvalues are plotted
in Fig. 2�b�, along with eigenspectra with nonzero detuning
for selected values of �u=−�d, for comparison. The corre-
sponding states are labeled �D0

�+��, �D0
�−��, �D��, and �D2��.

They are in general difficult to represent in closed form,
however the eigenvalues order naturally, and these are indi-
cated in Fig. 2�b�. In certain limits we may extract some
useful information about these states and some of these will
be given below. These plots illustrate the lifting of the de-
generacy of the �D0� states with detuning, in these cases with
opposite detunings, i.e., �u=−�d.

FIG. 1. The interferometer structure consisting of six coupled
sites with gate-controlled TMEs �1�t� and �2�t�. The particle is
moved from �1� to �5� using the alternating CTAP protocol via the
two intermediate states �3u� and �3d�. The control gates, labeled �u

and �d, break the symmetry of the paths, leading to interference
effects seen in the final state population as a function of the mag-
nitude of the energy shifts and the total time of the transport. Note
that we assume that the energy that the electron has at each site has
been set equal.
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To enact the CTAP protocol we initialize the device so
that the particle occupies site �1� at t=0, and apply an alter-
nating pulse sequence in the counterintuitive ordering along
the chain to effect population transfer. Conventional CTAP in
linear devices �e.g., the straddling4,21 or alternating
schemes�18,45 works by adiabatically transforming the null
state from this initial state to the desired output state. Al-
though in general there is no null state in our scheme, the
adiabatic transfer still works analogously. The evolution of
this state under the counterintuitive pulse sequence gives rise
to a smooth change in the population of the sites from �1� at
t=0 to �5� at t= tmax. Since we are using the alternating cou-
pling scheme there is a transient occupation of �3u� and �3d�
during the protocol. In the straddling scheme4,21 occupation
of all the intermediate sites along the chain is strongly sup-
pressed limiting its effectiveness for interferometric sensing.
Note that as the degeneracy of the central sites, �3u� and �3d�,
is broken by the gate induced detunings, interference will be
observed in certain regions of phase space. This interference
is the effect that we are seeking to understand and exploit in
this work.

To examine the effect of the detunings on the final state
population for the six-site system we numerically solve the
Schrödinger equation in Eq. �1� for the final state population
of �5� after the CTAP pulse sequence has been performed in
a finite time, long enough to ensure adiabatic transfer in the
zero detuning case, as a function of the detunings on the
middle sites. The results of this calculation are shown in Fig.
3. This map of the final state population ��55� shows several
regimes of interest. There is a prominent “cross” of high-
fidelity transport where either �u=0 or �d=0. This region is
governed by adiabatic time scales, and is discussed in Sec.
III. Superimposed on this, is a line of alternating high- and
low-fidelity regions where �u=−�d. This line corresponds to
the EAB effect and is governed by nonadiabatic oscillations,
and is discussed in Sec. IV.

III. ONE ARM WITH LARGE DETUNING,
OTHER QUASIRESONANT

The main adiabatic feature of the system mapped out in
Fig. 3 is the central cross region of high-fidelity transfer. It is
most clearly observed where at least one of the middle site
detunings is zero we have an adiabatic pathway that is simi-
lar to that of the simpler case with only one path as discussed
in Refs. 18 and 45. To examine the width of the high-fidelity
region we consider the case where one detuning is taken to
infinity as in this case we can retrieve some relatively simple
analytical expressions. In this limit we recover a five-site
system with detuning on the middle site and we explore the
dependence of the adiabaticity on the detuning of the central
site. Since the system is symmetric, the width of the central
cross feature is the same for the vertical and horizontal axes.
We are not aware of this case being treated previously in
studies of alternating coupling schemes for adiabatic pas-
sage. It is more conventional to consider detunings for states
without any population �in our case the even numbered
sites�, or the end of chains, and so this case represents an
interesting alternative detuning regime, which appears well
suited to interferometric applications.

Without detuning the eigenstates are eigenvectors of the
five-site chain can be fairly easily represented, as is done in
Ref. 45, but the central site detuning makes this problematic.
However, we can write down the states in appropriate limits,
namely, at the extrema of the protocol and in the middle
�when the adiabaticity is highest� as a series in the detuning,
�. Note that for consistency, we shall keep the notation �D0�
for the CTAP transport state, and the other eigenstates simi-
larly labeled, however as mentioned above, there is no longer
a null state with ��0.

At the beginning of the protocol, t=0, we have �1=0 and
the eigenvalues and eigenvectors are:

E0 = 0, E� = � �2, E2� = � �2 −
�

2
+ O	�
2, �4�

FIG. 2. �a� Tunneling matrix elements �1�t� and �2�t�, effecting
the counterintuitive pulse sequence. �b� Eigenspectra with varying
detuning, �u=�d=0 �solid lines�, �u=−�d=0.25�max �dashed�, and
�u=−�d=�max �dotted�. The eigenstates can be ordered as indi-
cated. The double degeneracy of the null space is lifted with non-
zero detunings of the central sites, we arbitrarily label the more
energetic eigenstate of the pair �D0

�+��, and the less energetic �D0
�−��.

FIG. 3. �Color online� Map of the final state population ��55� for
finite time showing the regions of adiabatic and nonadiabatic evo-
lution. Dark regions indicate high-fidelity transfer, the result of
adiabatic evolution. Light regions indicate where the transport is
low-fidelity transfer. Note the overall “cross” of high-fidelity adia-
batic transfer, with the EAB like oscillations along the line �u=
−�d.
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�D0� = �1� , �5�

�D�� =
1
�2

��4� � �5�� , �6�

�D2�� =
��1 −

�

2�2
+ O	�
2��2� + �3�

�2 �
�

�2
+ O	�
2

, �7�

and at the end of the protocol, t= tmax, we have �2=0 and

E0 = 0, E� = � �1, E2� = � �1 −
�

2
+ O	�
2, �8�

�D0� = �5� , �9�

�D�� =
1
�2

��1� � �2�� , �10�

�D2�� =
��1 −

�

2�1
+ O	�
2��3� + �4�

�2 �
�

�1
+ O	�
2

. �11�

The more interesting case is at the midpoint of the transport
protocol, i.e., t= tmax /2, and for simplicity, setting �1=�2
=�max /2, we have

E0 =
�

3
+ O	�
2, E� = �

�max

2
, E2� = �

�3�max

2
+

�

3

+ O	�
2, �12�

�D0� =

��1� − �3� + �5�� + � 2�

�max
+ O	�
2���2� + �4��

�3
,

�13�

�D�� =
1

2
��1� � �2� � �4� − �5�� , �14�

�D2�� =

��1� + �5�� + ���3 +
2�

3�max
+ O	�
2���2� + �4�� + �2 �

4�

�3�max

+ O	�
2��3�

�12 +
8��3

�max
+ O	�
2

. �15�

To quantify the adiabatic transfer in this five-site limit, and
thereby gain insight over the adiabatic cross, we use the adia-
baticity parameter defined for the five-site configuration

A =

��D+�
�H
�t

�D0��
�E+ − E0�2

. �16�

For adiabatic evolution of the system we require A�1. Ap-
plying a detuning to the central site the adiabaticity changes
and may shift the system out of the adiabatic regime. Nu-
merically one sees the increase in the adiabaticity parameter
with increasing � as is shown in Fig. 4. High fidelity transfer
�low A� occurs over a range of detunings. The effect of the
detuning has been examined for STIRAP �Ref. 1� and for
straddling CTAP in Ref. 4. However it is worth noting that
these cases are different from the one we are considering at
present, as the other treatments examine energy shifts of
states with vanishing occupation. Here, the populations are
explicitly nonzero due to the construction of the alternating
coupling scheme, increasing the effect of the detuning. This
is an important feature and in fact necessary to achieve an
interferometric readout signature. With the sinusoidal pulse

scheme, the maximal value of the adiabaticity occurs at t
= tmax /2, �1 max=�2 max=�max, and �=0, we find45

FIG. 4. Maximum adiabaticity through the protocol as a func-
tion of middle site detuning for ACTAP in a five-site system, cor-
responding to the case in the interferometer where one detuning has
been taken to 	. The solid line is the numerical determination, Eq.
�16� and the dashed is the analytical result to second order in �, Eq.
�19�. The smooth increase in adiabaticity correlates to the smooth
reduction in fidelity seen in Fig. 3 in the zones where �u and �d

have the same sign.
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A =
4�

�3�maxtmax

. �17�

To include the effect of the detuning on the adiabaticity we
perform a series expansion on the adiabaticity in �. The
adiabaticity parameter, to second order in � is

A =
4�

�3�maxtmax

+
20��

3�3�max
2 tmax

+
56��2

9�3�max
3 tmax

. �18�

This form of the adiabaticity parameter is plotted in Fig. 4
and compared with a full numerical calculation of A.

IV. INTERFEROMETRY IN THE SIX-SITE SYSTEM

Returning to the map of final state population as a func-
tion of the middle site detunings in Fig. 3, as well as the
central cross feature there is also the line of low-fidelity re-
gions across the �u=−�d diagonal where we see nonadia-
batic evolution. Along this line we see regions of low-fidelity
transfer superimposed upon the region where we expect high
fidelity. The position and number of these areas vary with the
total time, as is shown in Fig. 5. We see that as the total time
is increased, the frequency of the nonadiabatic oscillations
increases with increasing detuning.

We can understand the interference by considering the
eigenspectrum with nonzero detuning, in particular focusing
on the lifting of the null state degeneracy. As we see in Fig.
2�b� when the sites are oppositely detuned ��u=−�d�, the
states �D0

�+��= �D0
�−�� are degenerate at the start and end, but

are split evenly during the protocol and it is the population
oscillations between these states which will be important,
rather than the adiabaticity treated in Eq. �19�. To first order
in �, at the midpoint of the protocol we find

E0
��� = �

�

�5
, �19�

�D0
���� =

1
�5
���1� + �5�� �

�

�5�max

��2� + �4��

+
1

2
�− 1 � �5��3u� +

1

2
�− 1 � �5��3d� . �20�

The interference observed in the final state population can be
understood as resulting from the electron undergoing
Landau-Zener oscillations between these two states as the
Hamiltonian is evolving with the protocol. The nonadiabatic
behavior can be thought of as arising due to the total protocol
time required for the system to be able to resolve these two
states. That is, when the total time is large compared to the
energy gap between them the system is able to resolve the
lifted degeneracy of the null states. This energy gap depends
on the detunings of the central sites. Empirically, we find for
a given time tmax, maxima in the transfer fidelity occur when

�n =
fn

tmax
, �21�

where �n is the detuning of the nth maximum with �n
= ��u= ��d and a factor f �20 which has been determined
empirically. Since the states we are interested in are approxi-
mately parallel, a doubling in the total time will correspond

FIG. 6. �Color online� �a� Derivative of the final state population
with respect to �u. Regions with a large rate of change may be
considered useful for charge sensing applications. The very light
regions are of high negative derivative and dark regions high posi-
tive derivative. The presence of a charge will alter the final state
population due to its effect on the energy of the detuned site �3u� or
�3d� in the arm being used as the sensor. �b� Dependence of the
sensitivity �derivative of the final state population� on tmax.

FIG. 5. �Color online� �a� Final state population as a function of
total time for antisymmetric detunings ��u=−�d�. As the total time
increases we may resolve more instances of interference when the
accumulated phase difference between the two paths is � /2. �b�
Trace of the final state population as a function of �u for the maxi-
mum time shown in �a�.
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approximately to a doubling in the frequency. Since these
oscillations are periodic the nonadiabatic behavior will also
be periodic in the total time. This is plotted in Fig. 5 where
we see very clear linear relations on a log-log scale, except in
the large � limit. With increasing detuning there is an overall
reduction in fidelity, as the barrier between sites 1 and 5
increases, thereby suppressing population transfer. This ef-
fect is most evident in the lower-fidelity transport regions
outside the central cross feature in Fig. 3.

The distinct regions of adiabatic and nonadiabatic behav-
ior suggest that such a device might be interesting for charge
sensing. Mapping out the rate of change in the final state
population with respect to one detuning, as shown in Fig. 6,
we can identify device detuning configurations which will
display a large response to any change in the energy level of
the one of the middle sites due to a charge being in close
proximity. Using one arm as the detector arm and selecting a
detuning configuration which will show this large response
we can see that the final state populations respond to the
presence of a nearby charge. Figure 6�b� also shows the de-
pendence of the sensitivity on time for the first fringe from
Fig. 6�a�. The sensitivity of the interferometer at these oper-
ating points scales linearly with the total protocol time.

V. CONCLUSION

Mapping of the final state population of a 6 site CTAP
interferometer in an electrostatic Aharonov-Bohm style ge-

ometry shows an interesting interplay between adiabatic and
nonadiabatic transport of an electron in the device. We may
tune the device between these two regimes easily by modi-
fying the total protocol time for the CTAP transport or by
changing the on-site energy of the middle sites in the two
different paths. We have modeled the behavior of this device
and the dependence of the detuning on the adiabaticity. We
see effects similar to electrostatic Aharonov-Bohm oscilla-
tions as seen in the periodic behavior of the final state popu-
lation when the two paths have opposite detuning. In some
configurations a small alteration to the energy of a site will
result in the device being shifted from adiabatic transfer to
nonadiabatic. This is seen in a large change in the final state
population. Such sensitivity suggests a device which may
also offer opportunities for charge sensing applications.
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